Copied to
clipboard

G = C23.508C24order 128 = 27

225th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.508C24, C24.356C23, C22.2882+ 1+4, (C22×C4).15Q8, C23.65(C2×Q8), C2.7(C232Q8), (C22×C4).554C23, (C2×C42).595C22, (C23×C4).135C22, C23.Q8.18C2, C22.129(C22×Q8), C23.34D4.22C2, C23.63C23109C2, C23.65C23100C2, C2.C42.237C22, C2.40(C23.37C23), C2.81(C22.47C24), (C2×C4).167(C2×Q8), (C4×C22⋊C4).72C2, (C2×C4).166(C4○D4), (C2×C4⋊C4).347C22, C22.384(C2×C4○D4), (C2×C22⋊C4).517C22, SmallGroup(128,1340)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.508C24
C1C2C22C23C22×C4C2×C42C4×C22⋊C4 — C23.508C24
C1C23 — C23.508C24
C1C23 — C23.508C24
C1C23 — C23.508C24

Generators and relations for C23.508C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=e2=1, d2=ba=ab, f2=b, g2=ca=ac, ede=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 388 in 214 conjugacy classes, 100 normal (8 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C4×C22⋊C4, C23.34D4, C23.63C23, C23.65C23, C23.Q8, C23.508C24
Quotients: C1, C2, C22, Q8, C23, C2×Q8, C4○D4, C24, C22×Q8, C2×C4○D4, 2+ 1+4, C23.37C23, C232Q8, C22.47C24, C23.508C24

Smallest permutation representation of C23.508C24
On 64 points
Generators in S64
(1 9)(2 10)(3 11)(4 12)(5 37)(6 38)(7 39)(8 40)(13 45)(14 46)(15 47)(16 48)(17 49)(18 50)(19 51)(20 52)(21 43)(22 44)(23 41)(24 42)(25 55)(26 56)(27 53)(28 54)(29 59)(30 60)(31 57)(32 58)(33 64)(34 61)(35 62)(36 63)
(1 11)(2 12)(3 9)(4 10)(5 39)(6 40)(7 37)(8 38)(13 47)(14 48)(15 45)(16 46)(17 51)(18 52)(19 49)(20 50)(21 41)(22 42)(23 43)(24 44)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 62)(34 63)(35 64)(36 61)
(1 25)(2 26)(3 27)(4 28)(5 22)(6 23)(7 24)(8 21)(9 55)(10 56)(11 53)(12 54)(13 59)(14 60)(15 57)(16 58)(17 63)(18 64)(19 61)(20 62)(29 45)(30 46)(31 47)(32 48)(33 50)(34 51)(35 52)(36 49)(37 44)(38 41)(39 42)(40 43)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(2 10)(4 12)(5 44)(6 23)(7 42)(8 21)(14 46)(16 48)(17 63)(18 33)(19 61)(20 35)(22 37)(24 39)(26 56)(28 54)(30 60)(32 58)(34 51)(36 49)(38 41)(40 43)(50 64)(52 62)
(1 19 11 49)(2 50 12 20)(3 17 9 51)(4 52 10 18)(5 32 39 60)(6 57 40 29)(7 30 37 58)(8 59 38 31)(13 41 47 21)(14 22 48 42)(15 43 45 23)(16 24 46 44)(25 61 53 36)(26 33 54 62)(27 63 55 34)(28 35 56 64)
(1 57 55 47)(2 32 56 16)(3 59 53 45)(4 30 54 14)(5 35 44 20)(6 63 41 49)(7 33 42 18)(8 61 43 51)(9 31 25 15)(10 58 26 48)(11 29 27 13)(12 60 28 46)(17 38 36 23)(19 40 34 21)(22 52 37 62)(24 50 39 64)

G:=sub<Sym(64)| (1,9)(2,10)(3,11)(4,12)(5,37)(6,38)(7,39)(8,40)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,43)(22,44)(23,41)(24,42)(25,55)(26,56)(27,53)(28,54)(29,59)(30,60)(31,57)(32,58)(33,64)(34,61)(35,62)(36,63), (1,11)(2,12)(3,9)(4,10)(5,39)(6,40)(7,37)(8,38)(13,47)(14,48)(15,45)(16,46)(17,51)(18,52)(19,49)(20,50)(21,41)(22,42)(23,43)(24,44)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,62)(34,63)(35,64)(36,61), (1,25)(2,26)(3,27)(4,28)(5,22)(6,23)(7,24)(8,21)(9,55)(10,56)(11,53)(12,54)(13,59)(14,60)(15,57)(16,58)(17,63)(18,64)(19,61)(20,62)(29,45)(30,46)(31,47)(32,48)(33,50)(34,51)(35,52)(36,49)(37,44)(38,41)(39,42)(40,43), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (2,10)(4,12)(5,44)(6,23)(7,42)(8,21)(14,46)(16,48)(17,63)(18,33)(19,61)(20,35)(22,37)(24,39)(26,56)(28,54)(30,60)(32,58)(34,51)(36,49)(38,41)(40,43)(50,64)(52,62), (1,19,11,49)(2,50,12,20)(3,17,9,51)(4,52,10,18)(5,32,39,60)(6,57,40,29)(7,30,37,58)(8,59,38,31)(13,41,47,21)(14,22,48,42)(15,43,45,23)(16,24,46,44)(25,61,53,36)(26,33,54,62)(27,63,55,34)(28,35,56,64), (1,57,55,47)(2,32,56,16)(3,59,53,45)(4,30,54,14)(5,35,44,20)(6,63,41,49)(7,33,42,18)(8,61,43,51)(9,31,25,15)(10,58,26,48)(11,29,27,13)(12,60,28,46)(17,38,36,23)(19,40,34,21)(22,52,37,62)(24,50,39,64)>;

G:=Group( (1,9)(2,10)(3,11)(4,12)(5,37)(6,38)(7,39)(8,40)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,43)(22,44)(23,41)(24,42)(25,55)(26,56)(27,53)(28,54)(29,59)(30,60)(31,57)(32,58)(33,64)(34,61)(35,62)(36,63), (1,11)(2,12)(3,9)(4,10)(5,39)(6,40)(7,37)(8,38)(13,47)(14,48)(15,45)(16,46)(17,51)(18,52)(19,49)(20,50)(21,41)(22,42)(23,43)(24,44)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,62)(34,63)(35,64)(36,61), (1,25)(2,26)(3,27)(4,28)(5,22)(6,23)(7,24)(8,21)(9,55)(10,56)(11,53)(12,54)(13,59)(14,60)(15,57)(16,58)(17,63)(18,64)(19,61)(20,62)(29,45)(30,46)(31,47)(32,48)(33,50)(34,51)(35,52)(36,49)(37,44)(38,41)(39,42)(40,43), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (2,10)(4,12)(5,44)(6,23)(7,42)(8,21)(14,46)(16,48)(17,63)(18,33)(19,61)(20,35)(22,37)(24,39)(26,56)(28,54)(30,60)(32,58)(34,51)(36,49)(38,41)(40,43)(50,64)(52,62), (1,19,11,49)(2,50,12,20)(3,17,9,51)(4,52,10,18)(5,32,39,60)(6,57,40,29)(7,30,37,58)(8,59,38,31)(13,41,47,21)(14,22,48,42)(15,43,45,23)(16,24,46,44)(25,61,53,36)(26,33,54,62)(27,63,55,34)(28,35,56,64), (1,57,55,47)(2,32,56,16)(3,59,53,45)(4,30,54,14)(5,35,44,20)(6,63,41,49)(7,33,42,18)(8,61,43,51)(9,31,25,15)(10,58,26,48)(11,29,27,13)(12,60,28,46)(17,38,36,23)(19,40,34,21)(22,52,37,62)(24,50,39,64) );

G=PermutationGroup([[(1,9),(2,10),(3,11),(4,12),(5,37),(6,38),(7,39),(8,40),(13,45),(14,46),(15,47),(16,48),(17,49),(18,50),(19,51),(20,52),(21,43),(22,44),(23,41),(24,42),(25,55),(26,56),(27,53),(28,54),(29,59),(30,60),(31,57),(32,58),(33,64),(34,61),(35,62),(36,63)], [(1,11),(2,12),(3,9),(4,10),(5,39),(6,40),(7,37),(8,38),(13,47),(14,48),(15,45),(16,46),(17,51),(18,52),(19,49),(20,50),(21,41),(22,42),(23,43),(24,44),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,62),(34,63),(35,64),(36,61)], [(1,25),(2,26),(3,27),(4,28),(5,22),(6,23),(7,24),(8,21),(9,55),(10,56),(11,53),(12,54),(13,59),(14,60),(15,57),(16,58),(17,63),(18,64),(19,61),(20,62),(29,45),(30,46),(31,47),(32,48),(33,50),(34,51),(35,52),(36,49),(37,44),(38,41),(39,42),(40,43)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(2,10),(4,12),(5,44),(6,23),(7,42),(8,21),(14,46),(16,48),(17,63),(18,33),(19,61),(20,35),(22,37),(24,39),(26,56),(28,54),(30,60),(32,58),(34,51),(36,49),(38,41),(40,43),(50,64),(52,62)], [(1,19,11,49),(2,50,12,20),(3,17,9,51),(4,52,10,18),(5,32,39,60),(6,57,40,29),(7,30,37,58),(8,59,38,31),(13,41,47,21),(14,22,48,42),(15,43,45,23),(16,24,46,44),(25,61,53,36),(26,33,54,62),(27,63,55,34),(28,35,56,64)], [(1,57,55,47),(2,32,56,16),(3,59,53,45),(4,30,54,14),(5,35,44,20),(6,63,41,49),(7,33,42,18),(8,61,43,51),(9,31,25,15),(10,58,26,48),(11,29,27,13),(12,60,28,46),(17,38,36,23),(19,40,34,21),(22,52,37,62),(24,50,39,64)]])

38 conjugacy classes

class 1 2A···2G2H2I4A···4H4I···4X4Y4Z4AA4AB
order12···2224···44···44444
size11···1442···24···48888

38 irreducible representations

dim111111224
type++++++-+
imageC1C2C2C2C2C2Q8C4○D42+ 1+4
kernelC23.508C24C4×C22⋊C4C23.34D4C23.63C23C23.65C23C23.Q8C22×C4C2×C4C22
# reps1214444162

Matrix representation of C23.508C24 in GL6(𝔽5)

100000
010000
001000
000100
000040
000004
,
400000
040000
001000
000100
000040
000004
,
100000
010000
004000
000400
000010
000001
,
030000
300000
004000
000400
000042
000001
,
100000
010000
001000
000400
000010
000014
,
010000
400000
000100
001000
000020
000023
,
100000
010000
003000
000300
000020
000023

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,3,0,0,0,0,3,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,2,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,1,0,0,0,0,0,4],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,2,2,0,0,0,0,0,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,2,2,0,0,0,0,0,3] >;

C23.508C24 in GAP, Magma, Sage, TeX

C_2^3._{508}C_2^4
% in TeX

G:=Group("C2^3.508C2^4");
// GroupNames label

G:=SmallGroup(128,1340);
// by ID

G=gap.SmallGroup(128,1340);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,336,253,758,723,184,675,304]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=1,d^2=b*a=a*b,f^2=b,g^2=c*a=a*c,e*d*e=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽